Waveband Switching Efficiency in WDM Networks: Analysis and Case Study

Payam Torab, Virginia Hutcheon, David Walters and Abdella Battou

Lambda OpticalSystems Corporation
12100 Sunset Hills Rd, Suite 100, Reston, VA 20190, USA
Phone: +1-703-689-9500 Fax: +1-703-689-3795
E-mail: {ptorab, vhutcheon, dwalters, abattou}@lopsys.com
Introduction

- Waveband switching has received a lot of attention due to its switching efficiency, i.e., saving in optical ports.
- An ideal switch architecture should be able to provide wavelength, waveband, and fiber switching (multigranular optical crossconnect (MG-OXC)).
- Here we consider only waveband and wavelength switching layers.
- Wavebanding assumptions:
 - Uniform and fixed wavebands
 - General link sharing (no restriction such as same source or same destination for wavelength circuits).
- Intuitively, waveband switching is most efficient when several wavelength circuits share several common links.
- We quantify this efficiency here.

Xiaojun Cao; Anand, V.; Yizhi Xiong; Chunming Qiao, “A study of waveband switching with multilayer multigranular optical cross-connects,” IEEE Journal on Selected Areas in Communications, volume 21, number 7, Sept. 2003, pp. 1081-1095
Wavebanding – Simple Case

- In the simple case, wavelength circuits (lightpaths) with the same source and destination nodes are grouped together in a waveband.
- Logically, these lightpaths can be thought of as being routed on a logical link made of one or more waveband circuits (bandpaths).
- Transit nodes switch the signal at waveband level and therefore take only two optical ports for each switched waveband.
- End nodes have to terminate the waveband and therefore need more ports.

Diagram:
- Node A: Waveband Multiplexer, DWDM Multiplexer, Waveband Interface, Wavelength XC
- Node B: DWDM Multiplexer, Waveband Multiplexer, Wavelength XC
- Node C: Waveband Multiplexer, DWDM Demultiplexer, Waveband Interface, Wavelength XC

Legend:
- Node A: 6 ports
- Node B: 2 ports, 6 ports
- Logical hop (b available wavelengths)
- Two lightpaths with the same end-to-end routes

In the simple case, wavelength circuits (lightpaths) with the same source and destination nodes are grouped together in a waveband.

Logically, these lightpaths can be thought of as being routed on a logical link made of one or more waveband circuits (bandpaths).

Transit nodes switch the signal at waveband level and therefore take only two optical ports for each switched waveband.

End nodes have to terminate the waveband and therefore need more ports.
Analysis - Single Logical Hop

- Variables:
 - b : number of wavelengths in each waveband
 - h : average number of physical hops
 - u : average waveband utilization

- Number of optical ports (band + wavelength) if waveband-switched

 $$n_b = 2(bu + 1) + 2(h - 1) + 2(bu + 1) = 4bu + 2h + 2$$

- Number of optical ports (wavelength) if wavelength-switched

 $$n_w = 2bu + 2bu(h - 1) + 2bu = 2bu(h + 1)$$

- Waveband switching uses fewer optical ports when

 $$n_b < n_w \iff bu > \frac{h+1}{h-1} ; h > 1$$
Wavebanding – More Complex Case

- In the simple case, wavelength circuits (lightpaths) with the same source and destination nodes are grouped together in a waveband.
- Logically, these lightpaths can be thought of as being routed on a logical link made of one or more waveband circuits (bandpaths).
- Transit nodes switch the signal at waveband level and therefore take only two optical ports for each switched waveband.
- End nodes have to terminate the waveband and therefore need more ports.

In the simple case, wavelength circuits (lightpaths) with the same source and destination nodes are grouped together in a waveband.

Logically, these lightpaths can be thought of as being routed on a logical link made of one or more waveband circuits (bandpaths).

Transit nodes switch the signal at waveband level and therefore take only two optical ports for each switched waveband.

End nodes have to terminate the waveband and therefore need more ports.

Two lightpaths with partially overlapping routes.
Analysis - Multiple Logical Hops

- Variables: b, u and h same as in the single-hop case
 - l: number of logical hops per circuit (figure shows $l=2$)
 - p: probability of wavelength conversion when crossing logical hops

- Number of optical ports:
 - $n_b = [2(bu + 1) + 2(h - 1) + 2(bu + 1)] + (l - 1)[2(bu + p) + 2(h - 1) + 2(bu + 1)]$
 - $n_b = 2l(2bu + h + p) + 2(1 - p)$
 - $n_w = 2bu + 2bu(lh - 1) + 2bu = 2bu(lh + 1)$

- Waveband switching uses fewer optical ports when

 $n_b < n_w \iff bu > \frac{l(h + p) + (1 - p)}{1 + l(h - 2)} ; h > 2 - \frac{1}{l}$
Waveband Switching Efficiency

- Waveband switching efficiency is the relative saving in number of optical ports when waveband switching is performed instead of wavelength switching:

\[e = \frac{n_w - n_b}{n_w} = 1 - \frac{n_b}{n_w} \]

- Waveband switching efficiency for single and multiple logical hops

 Single logical hop\(\rightarrow \quad e = 1 - \frac{n_b}{n_w} = \frac{h-1}{h+1} - \frac{1}{bu} \quad ; h > 1 \)

 Multiple logical hops\(\rightarrow \quad e = 1 - \frac{n_b}{n_w} = \frac{lh+1-2l}{lh+1} - \frac{1}{bu} - \frac{(l-1)p}{bu(lh+1)} \quad ; h > 2 - \frac{1}{l} \)

- Notes:
 - As expected, waveband switching efficiency improves as logical hops in each circuit get longer and fewer (larger \(h \) and smaller \(l \)); it also improves with higher band utilization (larger \(u \)), and fewer conversions (smaller \(p \)).
 - Efficiency is a function of the product of the waveband size and utilization (\(bu \)); for example, efficiency is the same for wavebands of size 8 at 50% utilization and wavebands of size 4 at 100% utilization.
The efficiency condition $n_b < n_w$ (or $e > 0$) defines a region in the two-dimensional $bu-h$ plane where waveband switching is more efficient:

- Waveband-switching efficient region for single logical hop case ($l=1$)
 \[bu > \frac{h+1}{h-1} \]

Other examples of breakeven points and port savings:

- $l=2, p=1$
 \[bu=3, h=3 \rightarrow e=4.8\% \]
 \[bu=4, h=3 \rightarrow e=14.3\% \]
- $l=3, p=1$
 \[bu=3, h=3 \rightarrow e=0.0\% \]
 \[bu=4, h=3 \rightarrow e=10.0\% \]
 \[bu=3, h=4 \rightarrow e=15.4\% \]
 \[bu=4, h=4 \rightarrow e=25.0\% \]

Waveband switching can still be efficient even with 100% wavelength conversion as long as bandpaths are sufficiently long and packed!
Another View of Switching Efficiency

Waveband switching more efficient

Waveband switching efficiency \((e) \) (%)

Wavelength switching more efficient

Average number of waveband-switched circuits (\(bu \))

Average number of physical hops per bandpath (\(h \))

Single logical hop (dedicated bandpaths)

Waveband-switching efficient region
Case Study: A Carrier Network Model

- Network: 79 nodes, 137 links, complex mix of STM-1/4/16/64 circuits, 1+1 protection on fiber-disjoint paths for almost the entire demand

- Assumptions
 - Base traffic, as well as x2 and x5 growth scenarios
 - 10G capacity per wavelength (no 40G wavelengths)
 - Single as well as multiple logical hop design (dedicated and shared bandpaths)
 - Growth rate equally applied across STM-1/4/16 and STM-64 demand
 - Scaled up STM-1/4/16 demands are aggregated into new STM-64 circuits, accelerating the STM-64 demand growth; for example, under x2 growth, 36 STM-1 and 2 STM-64 circuits between endpoints A and B will turn into 36*2-64=8 STM-1 and 2*2+1=5 STM-64 circuits, therefore STM-64 circuits have more than doubled

- The analysis is about switching efficiency in terms of optical port usage, and is not affected by change in transmission parameters (e.g., number of wavelengths/wavebands per fiber)

- The studies are sample studies to demonstrate the waveband switching efficiency – they do not necessarily represent optimal designs for each scenario
Results at 1x

DWDM links: 215
Bandpaths: 294
2.5G/10G demand:
 188 1+1 protected (external)
 239 unprotected (internal)
 615 total

Performance

\[b = 4 \]
\[h = 3.820 \]
\[u = 0.523 \]
\[l = 1 \text{ (single logical hop)} \]
\[n_b = 9.004 \]
\[n_w = 10.083 \]

→ Switching efficiency

\[e = 10.7\% \]
Results at x2
- DWDM links: 271
- Bandpaths: 413
- 2.5G/10G demand:
 - 341 1+1 protected (external)
 - 316 unprotected (internal)
 - 998 total

Performance
- $b = 4$
- $h = 3.890$
- $u = 0.604$
- $l = 1$ (single logical hop)
- $n_b = 9.723$
- $n_w = 11.816$

→ **Switching efficiency**
- $e = 17.7\%$

Bandpaths

Physical Links
Results at x5

- DWDM links: 563
- Bandpaths: 857
- 2.5G/10G demand:
 - 890 1+1 protected (external)
 - 305 unprotected (internal)
 - Total: 2085

Performance

- $b = 4$
- $h = 4.600$
- $u = 0.608$
- $l = 1$ (single logical hop)
- $n_b = 10.464$
- $n_w = 13.619$

$\text{Switching efficiency} = 23.2\%$
Dedicated Bandpaths - Summary

Average Number of Physical Hops per Bandpath

- x_1: 3.82
- x_2: 3.89
- x_5: 4.60

Bandpath Utilization

- x_1: 52.3%
- x_2: 60.4%
- x_5: 60.8%

Waveband Switching Efficiency

- x_1: 10.7%
- x_2: 17.7%
- x_5: 23.2%

Waveband-switching efficient region

For single logical hop case ($l=1$):

- **Average number of waveband-switched circuits (bu)**
- **Average number of physical hops per bandpath (h)**

- x_2 and x_5 represent more utilized bandpaths.
- Longer bandpaths are more efficient.

Waveband modularity effect

P. Torab et al., Waveband Switching Efficiency in WDM Networks: Analysis and Case Study, OFC/NFOEC 2006
Summary – Dedicated and Shared Bandpaths

- Same detailed design process was repeated assuming that bandpaths can be shared. Simple heuristics were used for waveband and wavelength assignment.

<table>
<thead>
<tr>
<th>design approach</th>
<th>traffic growth</th>
<th>STM-64 circuits</th>
<th>throughput (Tbps)</th>
<th>b</th>
<th>u</th>
<th>h</th>
<th>l</th>
<th>p</th>
<th>n_w</th>
<th>n_b</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>shared bandpaths</td>
<td>x1</td>
<td>188</td>
<td>178</td>
<td>5.540</td>
<td>4</td>
<td>0.923</td>
<td>2.820</td>
<td>1.986</td>
<td>0.836</td>
<td>48.738</td>
<td>44.179</td>
</tr>
<tr>
<td></td>
<td>x2</td>
<td>341</td>
<td>246</td>
<td>9.280</td>
<td>4</td>
<td>0.951</td>
<td>2.945</td>
<td>1.700</td>
<td>0.753</td>
<td>45.698</td>
<td>38.934</td>
</tr>
<tr>
<td></td>
<td>x5</td>
<td>890</td>
<td>239</td>
<td>20.190</td>
<td>4</td>
<td>0.975</td>
<td>3.457</td>
<td>1.611</td>
<td>0.739</td>
<td>51.240</td>
<td>39.173</td>
</tr>
<tr>
<td>dedicated bandpaths</td>
<td>x1</td>
<td>188</td>
<td>239</td>
<td>6.150</td>
<td>4</td>
<td>0.523</td>
<td>3.820</td>
<td>1.000</td>
<td>0.000</td>
<td>20.167</td>
<td>18.008</td>
</tr>
<tr>
<td></td>
<td>x2</td>
<td>341</td>
<td>316</td>
<td>9.980</td>
<td>4</td>
<td>0.604</td>
<td>3.890</td>
<td>1.000</td>
<td>0.000</td>
<td>23.628</td>
<td>19.444</td>
</tr>
<tr>
<td></td>
<td>x5</td>
<td>890</td>
<td>305</td>
<td>20.850</td>
<td>4</td>
<td>0.608</td>
<td>4.600</td>
<td>1.000</td>
<td>0.000</td>
<td>27.238</td>
<td>20.928</td>
</tr>
</tbody>
</table>

- No need for wavelength conversion, always one logical hop with dedicated bandpaths.
- Probably can be improved through better waveband assignment.
Design Summary – Alternate View

Waveband switching becomes more efficient

Average number of waveband-switched lightpaths (bu)

Average number of physical hops per bandpath (h)

Efficiency region boundary - dedicated bandpaths (l = 1, p = 0)

Shared bandpaths (l = 1.611, p = 0.739)
Shared bandpaths (l = 1.700, p = 0.753)
Shared bandpaths (l = 1.986, p = 0.836)

Designs using dedicated bandpaths – lower utilization, longer bandpaths

Designs using shared bandpaths – higher utilization, shorter bandpaths
Conclusion

- We analyzed waveband switching efficiency for the multigranular optical crossconnect architecture, unrestricted waveband sharing, and considering the impact of need for wavelength conversion.

- We have done a comprehensive study of a realistic network, with lots of subrate traffic (which adversely affects switching efficiency), yet waveband switching was still found to be very effective.

- Traditional observations hold that efficiency improves as bandpath utilization or number of hops in each bandpath increase, however, the effect of wavelength conversion on efficiency does not seem to be major, i.e., waveband switching can be still efficient when wavelength conversion ratio is high (80%+), as long as wavebands are well utilized.

- Joint wavelength/waveband routing design is a nice research problem, but what is more practical at this point is wavebanding and waveband assignment (assuming wavelength routes are given), because wavelength routing is constrained by subrate traffic and diversity requirements.
Thank You – Questions

- Visit our booth (Booth No. 3503) to learn about our multigranular optical crossconnect with integrated DWDM and waveband/wavelength switching, as well as our other products.

Booth No. 3503

www.lambdaopticalsystems.com